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Left Inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition
A number 𝑥 that satisfies 𝑥𝑎 = 1 is called the inverse of a

Inverse (i.e., 
1

𝑎
) exists if and only if 𝑎 ≠ 0, and is unique

A matrix 𝑋 that satisfies 𝑋𝐴 = 𝐼 is called a left inverse of 𝐴
If a left inverse exists we say that 𝐴 is left-invertible

𝐴:𝑚 × 𝑛 ⟹ 𝐼: 𝑛 × 𝑛 ⟹ 𝑋: 𝑛 × 𝑚

Example

The matrix 𝐴 =
−3 −4
4 6
1 1

Has two different left inverses:

𝐵 =
1

9

−11 −10 16
7 8 −11

, 𝐶 =
1

2

0 −1 6
0 1 −4



5

Solving linear equations with a left 
inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Method

❑Suppose 𝐴𝑥 = 𝑏, and 𝐴 has a left inverse 𝐶
❑Then 𝐶𝑏 = 𝐶 𝐴𝑥 = 𝐶𝐴 𝑥 = 𝐼𝑥 = 𝑥
❑So multiplying the right-hand side by a left inverse yields the solution
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Left inverse of vector

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Note

A non-zero column vector always has a left inverse.

Left inverse is not unique.

Example

a=
1
0
3

Two ways:  1 𝑎−1 =
1

𝑎𝑖
𝑒𝑖
𝑇𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 ≠ 0 2 𝑎𝑇𝑎 = 1 ⇒

𝑎𝑇

𝑎
2

Matrix with orthonormal columns 𝐴−1 = 𝐴𝑇

Example

Row vector does not have left inverse

𝐴 = 1 0 3
Think about rank(BA) , rank(I) with this theory: 𝑟𝑎𝑛𝑘 𝐵𝐴 ≤ min(𝑟𝑎𝑛𝑘 𝐴 , 𝑟𝑎𝑛𝑘 𝐵 )
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Left inverse and column 
independence

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

A matrix is left-invertible if and only if its columns are linearly independent

Proof
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Left inverse and column 
independence

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem
If 𝐴 has a left inverse 𝐶 then the columns of 𝐴 are linearly independent
We’ll see later that the converse is also true, so:
A matrix is left-invertible if and only if its columns are linearly independent
Matrix generalization of
A number is invertible if and only if it is nonzero
From Previous Theorem
Left-invertible matrices are all tall or square
Wide matrix is not always left invertible

Tall or square matrices can be left invertible

Example

1 1
0 1
3 0

,

1 1 −1
0 3 0
0 0 2
0 0 0

,

1 0
0 4
0 0
0 0

,
1 1 0
0 1 3

,

1 −2 −1
1 3 4
−2 0 2
0 0 0

,
1 2
0 0
1 2

,
0 1 −1
0 3 0
0 0 2
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Right Inverse
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Right inverse and row independence

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

A matrix is right-invertible if and only if its rows are linearly independent

Proof
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Right inverses

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

A matrix 𝑋 that satisfies 𝐴𝑋 = 𝐼 is a right inverse of 𝐴

If a right inverse exists we say that A is right-invertible

𝐴 is right-invertible if and only if 𝐴𝑇 is left-invertible:
𝐴𝑋 = 𝐼 ⟹ 𝐴𝑋 𝑇 = 𝐼 ⟹ 𝑋𝑇𝐴𝑇 = 𝐼

so we conclude:

A is right invertible if and only if its rows are linearly independent

Right-invertible matrices are wide or square 
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Solving linear equations with a right 
inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Method

❑Suppose A has a right inverse 𝐵
❑Consider the (square or underdetermined) equations of 𝐴𝑥 = 𝑏
❑ 𝑥 = 𝐵𝑏 is a solution:
❑𝐴𝑥 = 𝐴 𝐵𝑏 = 𝐴𝐵 𝑏 = 𝐼𝑏 = 𝑏
❑So 𝐴𝑥 = 𝑏 has a solution for any b

Example

Same 𝐴, 𝐵, 𝐶 in last example.

𝐶𝑇 and 𝐵𝑇 are both right inverses of 𝐴𝑇

Under-determined equations 𝐴𝑇𝑥 = 1, 2 has (different) solutions.

𝐵𝑇 1, 2 = (
1

3
,
2

3
, −

2

3
), 𝐶𝑇 1, 2 = 0,

1

2
, −1

there are many other solutions as well
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Conclusion:
Left and Right 

Inverse
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Why “at most”??

𝑋𝐴 = 𝐼

ቐ

−𝑦1 + 𝑦2 = −4
0𝑦1 − 𝑦2 = 3
2𝑦1 + 𝑦2 = 0

𝐴 =
−1 1
0 −1
2 1

𝑋 =
1 2 1
4 5 2

Linear equations and matrix inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

Left-Invertible matrix: if 𝑋 is a left inverse of 𝐴, then 
𝐴𝑥 = 𝑏 ⟹ 𝑥 = 𝑋𝐴𝑥 = 𝑋𝑏

There is at most one solution using X (if there is a solution, it must be 
equal to 𝑋𝑏)

We must know in advance that there exists at least one solution
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Linear equations and matrix inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Note
❑If the system of equations 𝑨𝒙 = 𝒃 is consistent, and if a matrix 𝑩 exists such 

that 𝑩𝑨 = 𝑰, then the system of equations has a unique solution, namely 
𝒙 = 𝑩𝒃.

❑Right-inversible matrix: if 𝑋 is a right inverse of 𝐴, then there is at least one 
solution (x=Xb):

𝑥 = 𝑋𝑏 ⟹ 𝐴𝑥 = 𝐴𝑋𝑏 = 𝑏
❑To pursue these ides further, suppose that again we want to solve a system of linear 

equations, 𝑨𝒙 = 𝒃. Assume now that we have another matrix, 𝑩, such that 𝑨𝑩 = 𝑰. Then 
we can write 𝑨 𝑩𝒃 = 𝑨𝑩 𝒃 = 𝑰𝒃 = 𝒃; hence 𝑩𝒃 solves the equations 𝑨𝒙 = 𝒃. This 
conclusion did not require an a prior assumption that a solution exist; we have produced a 
solution. The argument does not reveal whether 𝑩𝒃 is the only solution. There may be 
others.

❑Invertible matrix: if A is invertible, then
𝑨𝒙 = 𝒃 ⟺ 𝒙 = 𝑨−𝟏𝒃

There is a unique solution
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● System of linear equations 𝐴𝑥 = 𝑏:

○ A right inverse of 𝐴, say 𝐴𝐵 = 𝐼. Then 𝐵𝑏 is a solution, 

as is verified by nothing 𝐴 𝐵𝑏 = 𝐴𝐵 𝑏 = 𝐼𝑏 = 𝑏.

○ Why don’t need to check the consistency for using right 

inverse?

○ A left inverse of 𝐴, say CA = 𝐼, then we can only 

conclude that 𝐶𝑏 is the sole candidate for a solution; 

however, it must be checked by substitution to 

determine whether, in fact, it is a solution

Conclusion

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Square Matrix 
Inverse
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Inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition
For 𝐴 ∈ 𝑀𝑛×𝑛, if there exists a matrix 𝐵 ∈ 𝑀𝑛×𝑛 such that 𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛, then:
A is invertible (or nonsingular)
B is the inverse of A
The inverse of 𝐴 is denoted by 𝐵 = 𝐴−1

A square matrix that does not have an inverse is called non-invertible (or singular)
For a square matrix left and right inverse are the same. Rows and columns are linear 
independent.

Theorem

The inverse of a square matrix is unique.

Theorem

For a square matrix, the right and left inverse are the same
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Square matrix inverse and column 
independence

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

A square matrix is invertible if and only if its columns are linearly independent

Proof
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Invertible Matrices

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Holds in general

Holds for

square matrices

Holds for

square matrices

Holds in general
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Gauss-Jordan Elimination for finding the Inverse of a 
matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Method

❑ Let 𝐴 be a 𝑛 × 𝑛 matrix:
❑ Adjoin the identity 𝑛 × 𝑛 matrix 𝐼𝑛 to 𝐴 to form the matrix 𝐴 ∶ 𝐼𝑛 .
❑ Compute the reduced echelon form of 𝐴 ∶ 𝐼𝑛 .

❑ If the reduced echelon form is of the type 𝐼𝑛 ∶ 𝐵 , then 𝐵 is the inverse of 𝐴.
❑ If the reduced echelon form is not the type 𝐼𝑛 ∶ 𝐵 , in that the first 𝑛 × 𝑛 submatrix is 

not 𝐼𝑛 then 𝐴 has no inverse.
𝐴 | 𝐼 Gauss−Jordan elimination [𝐼 | 𝐴−1]

Important

An n × n matrix is invertible if and only if its reduced echelon form is In.

A is row equivalent to 𝐼𝑛
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Inverse (Example)

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

Find inverse of the following matrix using Gauss-Jordan Elimination:

𝐴 =
1 4
−1 −3

𝐴𝑋 = 𝐼 ⟹
1 4
−1 −3

𝑥11 𝑥12
𝑥21 𝑥22

=
1 0
0 1

⟹
𝑥11 + 4𝑥21 𝑥12 + 4𝑥22
−𝑥11 − 3𝑥21 −𝑥12 − 3𝑥22

=
1 0
0 1

By equating corresponding entries we have:

𝑥11 + 4𝑥21 = 1
−𝑥11 − 3𝑥21 = 0

(1)

𝑥12 + 4𝑥22 = 0
−𝑥12 − 3𝑥22 = 1

(2)

This two system of linear equations 
have the same coefficient matrix, 
which is exactly the matrix 𝐴
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Inverse (Example)

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Rest of The Example

1 ⟹
1 4 | 1
−1 −3 | 0

⟹
1 0 | −3
0 1 | 1

⟹ 𝑥11 = −3, 𝑥21 = 1

2 ⟹
1 4 | 0
−1 −3 | 1

⟹
1 0 | −4
0 1 | 1

⟹ 𝑥12 = −4, 𝑥22 = 1

Thus 𝑋 = 𝐴−1 =
−3 −4
1 1

1 4 | 1 0
−1 −3 | 0 1

𝐺𝑢𝑎𝑠𝑠−𝐽𝑜𝑟𝑑𝑎𝑛 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 1 0 | −3 −4
0 1 | 1 1

𝐴 𝐼 𝐼
𝐴−1

Solution for 
𝑥11
𝑥21

Solution for 
𝑥12
𝑥22

Using Gauss-Jordan Elimination on the 
matrix 𝐴 with the same row operations
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Inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

Properties (If 𝐴 is invertible matrix, k is a positive integer and 𝑐 is a scalar):
𝐴−1 is invertible and 𝐴−1 −1 = 𝐴

𝐴𝑘 is invertible and 𝐴𝑘
−1

= 𝐴−𝑘 = 𝐴−1 𝑘

𝑐𝐴 is invertible if 𝑐 ≠ 0 and 𝑐𝐴 −1 =
1

𝑐
𝐴−1

𝐴𝑇 is invertible and 𝐴𝑇 −1 = 𝐴−1 𝑇

Theorem

If 𝐴 and 𝐵 are invertible matrices of order 𝑛, then 𝐴𝐵 is invertible and 𝐴𝐵 −1 = 𝐵−1𝐴−1

𝐴1𝐴2𝐴3⋯𝐴𝑛
−1 = 𝐴𝑛

−1⋯𝐴3
−1𝐴2

−1𝐴1
−1
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Inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem
The solution set K of any system Ax=b of m linear in n unknows is (so is a linear map T with 

standard matrix A), s is a particular solution:

𝐾 = 𝑠 + 𝑁𝑢𝑙𝑙(𝑇𝐴)

Theorem (Using above Theorem)

Let 𝐴𝑥 = 𝑏 be a system of 𝑛 linear equations in 𝑛 variable.

The system has exactly one solution 𝐴−1𝑏 if and only if 𝐴 is invertible.



30

Invertible Matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

Let 𝐴 =
𝑎 𝑏
𝑐 𝑑

. If 𝑎𝑑 − 𝑏𝑐 ≠ 0, then 𝐴 is invertible and

𝐴−1 =
1

𝑎𝑑 − 𝑏𝑐
𝑑 −𝑏
−𝑐 𝑎

If 𝑎𝑑 − 𝑏𝑐 = 0, then 𝐴 is not invertible

Note

Let 𝐴 =
𝑎 𝑏
𝑐 𝑑

. det 𝐴 = 𝑎𝑑 − 𝑏𝑐.

2 × 2 matrix 𝐴 is invertible if and only if det 𝐴 ≠ 0.
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Elementary Matrices

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

Each Elementary Matrix is 𝐸 is invertible. The inverse of 𝐸 is the 
elementary matrix of the same type that transforms 𝐸 back into 𝐼.

Example

Find the inverse of 𝐴 =
1 0 0
0 1 0
−4 0 1
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Solving square systems of linear 
equations

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Method

❑ Suppose 𝐴 is invertible

❑ For any 𝑏, 𝐴𝑥 = 𝑏 has the unique solution

𝑥 = 𝐴−1𝑏

❑ Matrix generalization of simple scalar equation 𝑎𝑥 = 𝑏 having solution 𝑥 =
1

𝑎
𝑏 (for 𝑎 ≠ 0)

❑ Simple-looking formula 𝑥 = 𝐴−1𝑏 is basis for many applications
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Invertible (Nonsingular) matrices

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Conclusion

The following are equivalent for a square matrix A:
❑A is invertible
❑Columns of 𝐴 are linearly independent
❑Rows of 𝐴 are linearly independent 
❑𝐴 has a left inverse
❑𝐴 has a right inverse

𝑟𝑜𝑤 𝑟𝑎𝑛𝑘 𝐴 = 𝑐𝑜𝑙 𝑟𝑎𝑛𝑘 𝐴 = 𝑛
If any of these hold, all others do
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Invertible matrices

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Examples
𝐼−1 = 𝐼

If 𝑸 is orthogonal, i.e. , square with 𝑸𝑻𝑸 = 𝑰, then 𝑸−𝟏 = 𝑸𝑻

2 × 2 matrix 𝐴 is invertible if and only if 𝐴11𝐴22 ≠ 𝐴12𝐴21

𝐴−1 =
1

𝐴11𝐴22 − 𝐴12𝐴21

𝐴22 −𝐴12
−𝐴21 𝐴11

You need to know this formula

There are similar but much more complicated formulas for larger matrices (and no, you do not 

need to know them)

Consider matrix 𝐴 =
1 −2 3
0 2 2
−3 −4 −4

𝐴 is invertible, with inverse:

𝐴−1 =
1

30

0 −20 −10
−6 5 −2
6 10 2

Verified by checking 𝐴𝐴−1 = 𝐼 (or 𝐴−1𝐴 = 𝐼)
We’ll soon see how to compute the inverse
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Properties

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Properties

❑ 𝐴𝐵 −1 = 𝐵−1𝐴−1

❑ If 𝐴 is nonsingular, then 𝐴𝑇 is nonsingular

𝐴𝑇 −1 = 𝐴−1 𝑇 (sometimes denoted 𝐴−𝑇)
❑ Negative matrix powers: 𝐴−1 𝑘 is denoted by 𝐴−𝑘

❑With 𝐴0 = 𝐼, Identity 𝐴𝑘𝐴𝑙 = 𝐴𝑘+𝑙 holds for any integers 𝑘, 𝑙
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Triangular matrices

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

Lower Triangular 𝐿 with non-zero diagonal entries is invertible

Theorem

Upper Triangular 𝑅 with non-zero diagonal entries is invertible

Proof??

Proof??
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Why Matrix of Change of Basis is invertible?

𝐵𝑒𝑐𝑎𝑢𝑠𝑒 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑛𝑑 𝑟𝑜𝑤𝑠 𝑜𝑓 𝑖𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑎𝑠𝑖𝑠 𝑠𝑜 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑎𝑛𝑑 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒
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Rank and Inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

Given a square matrix 𝑀 and its inverse 𝑀−1, then 𝑀 and 𝑀−1 have the same 

rank.
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Solution:

𝑟𝑎𝑛𝑘 𝐴𝐵 ≤ 𝑟𝑎𝑛𝑘 𝐴 , [∗] 𝑟𝑎𝑛𝑘 𝐴𝐵 ≤ 𝑟𝑎𝑛𝑘 𝐵

𝐵−1 𝐵𝐴 = 𝐴 ⇒ 𝑟𝑎𝑛𝑘 𝐵−1 𝐵𝐴 = 𝑟𝑎𝑛𝑘 𝐴 ≤ 𝑟𝑎𝑛𝑘 𝐵−1

𝐴−1 𝐴𝐵 = 𝐵 ⇒ 𝑟𝑎𝑛𝑘 𝐴−1 𝐴𝐵 = 𝑟𝑎𝑛𝑘 𝐵 ≤ 𝑟𝑎𝑛𝑘 𝐴𝐵

Therefore: 𝑟𝑎𝑛𝑘 𝐴 ≤ 𝑟𝑎𝑛𝑘 𝐴𝐵 [**]

so using [*],[**] then  rank(A)=rank(AB)

Rank and Inverse

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

If A is m × n and B is an n × n invertible matrix, then rank(AB) = rank(A).
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Let A be a square n × n matrix. Then the following are equivalent.
● 1. A is an invertible matrix.
● 2. A is row equivalent to the n × n identity matrix.
● 3. A has n pivot positions.
● 4. The equation Ax = 0 has only the trivial solution.
● 5. The columns of A form a linearly independent set.
● 6. The linear transformation x → Ax is one-to-one.
● 7. The equation Ax = b has at least one solution for each b ∈ ℝ𝑛.
● 8. The columns of A span ℝ𝑛.
● 9. The linear transformation x → Ax maps ℝ𝑛 onto ℝ𝑛.
● 10. There is an n × n matrix C such that CA = I.
● 11. There is an n × n matrix D such that AD = I.
● 12. 𝐴𝑇 is an invertible matrix.

The Invertible Matrix Theorem

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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